
A Equivariant Hochschild homology

The aim of this appendix is to introduce the equivariant Hochschild homology
of an algebra acted by an algebraic group. For a commutative algebra this is an
explicit form of the derived loop stack introduced in [TV]. In the body of the
paper we only need the Bott morphism (Definition A.2) and its key property
given by Proposition A.3. The general definition is given to motivate it. The
proof of the proposition is based on general facts about cyclic and simplicial
objects. They are collected in the first three subsections. For a more careful
exposition we refer to [Lod] and references therein.

I am grateful to P. Bressler and D. Kaledin for helpful discussions.

A.1 Simplicial objects

Let∆ denote the simplicial category, with objects non-empty linear orders [n] =
{0 < 1 < ... < n} for n ∈ N and morphisms Hom∆([m], [n]) all order-preserving
maps from [m] to [n]. Morphisms in ∆ are generated by faces δi : [n − 1] →
[n] for which every element except the ith one has exactly one preimage, and
degeneracies σi : [n + 1] → [n] for which every element except the ith one has
exactly one preimage. The corresponding morphisms in ∆op are denoted by
di and si. The simplex category may be realized as a full subcategory of the
category of small categories consisting of path categories of finite linear quivers

qn : 0 //1 // . . . //n .

If C is a category, then a simplicial object F in C is a functor F : ∆op → C,
and a cosimplicial object G in C is a functor G : ∆ → C. Denote the category of
simplicial (respectively, cosimplicial) sets by SSet (respectively, cSSet). It is
convenient to present a simplicial (respectively, cosimplicial) object F (respec-
tively, G) as a sequence of objects Fi (respectively, Gi) and morphisms δi, σi

(respectively, di, si) between them. Sets Hom∆([m], [n]) form a cosimplicial
simplicial set. The simplicial set Hom∆(−, [n]) is denoted by ∆n and is called
(the standard) n-simplex.

The product on the category of (co)simplicial sets is given by the diagonal
map ∆ → ∆×∆ in combination with product of sets. For a pair of simplicial
sets the function complex Hom(X,Y ), which is a simplicial set, is defined by
the formula

Hom(X,Y ) = Hom∆(X ×∆•, Y ),

where Hom∆ means morphisms in the category of simplicial sets, the simplicial
structure on Hom(X,Y ) is induced by the cosimplicial structure on ∆•. For a
pair of cosimplicial sets the definition is the same. Functors × and Hom are
connected by the exponential law:

Hom∆(Z,Hom(X,Y )) = Hom∆(X × Z, Y ),

that is X ×− is left adjoint to Hom(X,−).
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Let K• be a cosimplicial simplicial set. Define the simplicial set TotK• by

TotK• = Hom∆op(∆•,K•),

where subscript ∆op means that we consider only maps that commute with the
cosimplicial structures on both sides (see e. g. [GJ, Ch. VII.5]).

The functor −×∆• from simplicial sets to cosimplicial simplicial sets is left
adjoint to Tot.

Fix an additive category. We shall name its objects by modules. For a
simplicial module E, that is a simplicial object in the additive category, the
associated chain complex Ch(E) in this category is defined as follows. Let
∆n = Hom∆([n],−) be the standard cosimplicial set. Let D−n be the free
Z-module generated by ∆n. Sequence D• is a simplicial objects in cosimplicial
Z-modules. Define the morphism of cosimplicial Z-modules b : D−n → D−n+1

by b =
∑

i(−1)iδi, where δi are face maps. This is a differential. Denote the
corresponding complex of cosimplicial Z-modules by D. Then for a simplicial
module E the complex Ch(E) is given by

Ch(E) = D ⊗∆ E,

where ⊗∆ means the sum
∐

Dn ⊗ En/ ≈, where the equivalence relation
≈ is generated by x ⊗ φ∗(y) ≈ φ∗(x) ⊗ y for any x ∈ Dm, y ∈ En and
φ ∈ Hom∆([n], [m]). Complex D is a resolution of the trivial Z-module in
the category of cosimplicial Z-modules, thus functor Ch is the derived tensor
product with the trivial Z-module.

In the same way for a cosimplicial module E the cochain complex cCh(E)
is defined.

A cosimplicial simplicial module E gives the bicomplex cCh(Ch(E)). There
is a natural morphism from the chain complex Ch(TotE) to the total complex
Tot cCh(Ch(E)) of this bicomplex.

A.2 Cyclic objects

Let Λ denote the cyclic category, with objects non-empty linear orders with a
free action of Z and morphisms all order-preserving maps of orders that com-
mutes with the action of Z taken up to this action. Objects of Λ are numerated
by non-negative integers, object [n] is presented by the set Z with the standard
order and the generator of Z acts on it by shift by n + 1. Analogously with
the simplex category morphisms in Λ are generated by faces δi, degeneracies
σi and in addition by cyclic operators τn ∈ Aut([n]) = Zn+1 that is a genera-
tor of the cyclic group. Category Λ contains ∆ as a subcategory, morphisms
of the latter are generated by faces and degeneracies excluding the extra one
σn+1 ∈ HomΛ([n + 1], [n]). Denote this inclusion and the opposite functor by
j : ∆op ↪→ Λop and jop : ∆ ↪→ Λ. The cyclic category may be realized as a
subcategory of the category of small categories consisting of path categories of
cyclic quivers

cn : 0 //1 // . . . //njj
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and functors between them that induce maps of degree 1 on nerves.
If C is a category, then a cyclic object F in C is a functor F : Λop → C,

and a cocyclic object G in C is a functor G : Λ → C. Denote the category of
(co)simplicial sets byCSet (cCSet). SetsHomΛ([m], [n]) form a cocyclic cyclic
set. The cyclic setHomΛ(−, [n]) is denoted by Λn and called the standard cyclic
set.

There are forgetful functors j∗ : CSet → SSet and jop∗ : cCSet → cSSet
induced by embeddings j : ∆op ↪→ Λop and jop : ∆ ↪→ Λ. The result of the
forgetful functor is called the (co)simplicial set associated with a (co)cyclic set.

The product onCSet (cCSet) is defined in the same way as for (co)simplicial
sets. For a pair of cyclic sets the function complex Hom(X,Y ), which is a cyclic
set, is defined by the formula

Hom(X,Y ) = HomΛ(X × Λ•, Y ),

whereHomΛ means morphisms in the category of cyclic sets, the cyclic structure
on the result comes from the cocyclic structure on Λ•. The function complex
commutes with the forgetful functor j∗: there is an isomorphism

j∗ Hom(X,Y ) = Hom(j∗X, j∗Y )

for cyclic X and Y .
The functor j∗ : CSet → SSet has a left adjoint j∗ : SSet → CSet. Their

composition acts as
j∗j

∗X = C×X,

where C is the simplicial set associated with cyclic set j∗pt. This cyclic set is
defined by (j∗pt)n = Zn+1, Aut([n]) acts freely on (j∗pt)n. Simplicial set C has
only two non-degenerate simplexes in degree 0 and 1 and may be thought as a
simplicial model of circle. The functor j∗j

∗ is a monad, in particular there is
the canonical map C × C = j∗j

∗j∗j
∗pt

can→ j∗j
∗pt = C that presents the group

structure on circle. Objects in the image of j∗ : CSet → SSet are modules over
this monad:

j∗j
∗j∗X

can→ j∗X.

Thus cyclic sets may be thought as simplicial sets with circle action.
Let K• be a cocyclic simplicial set. Define the cyclic set TotK• by

TotK• = HomΛop(Λ•, j∗K•),

where Hom is the function complex in the category of cyclic sets and subscript

Λop means that we consider only maps that commute with the cocyclic structures
on both sides. One may check that j∗ TotK

• = Tot jop∗ K•, where jop∗ is the
forgetful functor from cocyclic simplicial to cosimplicial simplicial sets.

Functor Tot has left adjoint from cyclic to cocyclic simplicial sets defined by
X 7→ X ×C Λ•, where ×C means the product of cyclic sets with nth component
factorized by Zn+1. The cocyclic structure comes from the second factor and
the simplicial structure is given by the natural isomorphism of sets X ×C Λn =
j∗X ×∆n.
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Fix an additive category. Let E be a cyclic module, that is a cyclic object in
this additive category. The associated simplicial module j∗E is a module over
the monad − ⊗ Z[C], where Z[C] is the free Z-module generated by simplicial
set C. This follows that the chain complex Ch(j∗E) is acted by Ch(Z[C]),
homology of the last complex is homology of circle.

The cyclic chain complex CCh(E) plays the role of the equivariant chains
with respect to the circle action and may be defined in three equivalent ways:

1. Simplicial object j∗E is a module over the monad j∗j
∗. The cyclic chain

complex CCh(E) is the homology of this monad with coefficients in this
module, that is the total complex of the bisimplicial module

j∗j
∗ · · · j∗j∗︸ ︷︷ ︸

n

j∗E = Z[C]⊗ · · · ⊗ Z[C]︸ ︷︷ ︸
n

⊗j∗E

with the standard simplicial structure.

2. Complex CCh(E) presents the derived tensor product with the trivial
module in the category of cocyclic modules.

3. CCh(E) = (Ch(j∗E)⊗Z[u], b+uB), where u is of degree 2, b is the usual
differential on Ch(j∗E) and B is a differential of degree −1, for a precise
formula for it see [Lod, Ch. 2.1].

Equivalence of first two definitions is a standard fact about triple homology,
the second and the third definitions are equivalent by [Lod, Ch. 6.2]. Operator
B presents action of 1-cycle in Ch(Z[C]).

From a cocyclic simplicial module E functor Tot produces a cyclic module.
This action respects operator B up to homotopy by the following proposition.

Proposition A.1. For a cocyclic simplicial module E the natural morphism of
complexes Ch(j∗ TotE) → Tot cCh(jop∗ Ch(E)) commutes with operators B up
to a boundary.

Proof. Let T •
•,• be the cyclic cyclic cosimplicial set with Tm

n,• = Tot j∗∆
m ×Λn.

Then TotE = Z[T •
•,•]⊗∆×Λop E for a cocyclic simplicial complex E, where the

tensor product has the same sense as in the end of the previous subsection.
This follows that it is enough to prove the statement only for free cocyclic
simplicial Z-modules. Then the statement follows from the same one for the
functor adjoint to Tot on free Z-modules. The last statement may be proved by
the acyclic models method, for details see [Jon, Th. 4.1].

A.3 Cyclic nerve

Let C be a category. The nerve of C is the simplicial set NC• = Fun(q•, C), the
simplicial structure comes from the cosimplicial structure on q•. That is

NnC = {A0
f0 //A1

f1 // . . .
fn−1 //An | Ai ∈ Ob C, fi ∈ Mor C},
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face maps are given by composition of morphisms, degeneracies — by insertion
of identity.

The cyclic nerve of C is the cyclic set CNC• = Fun(c•, C), the cyclic structure
comes from the cocyclic structure on c•. That is

CNnC = {A0
f0 //A1

f1 // . . .
fn−1 //An

fn

kk | Ai ∈ Ob C, fi ∈ Mor C},

face maps are given by composition of morphisms, degeneracies — by insertion
of identity and cyclic operator — by rotations of loop of morphisms.

Let G be a groupoid. The inertia groupoid IG is the category with

Ob IG = {(A, a) | A ∈ ObG, a ∈ AutA}
HomIG((A, a), (B, b)) = {x : ax = xb | x ∈ HomG(A,B)}.

The simplicial set associated with the cyclic nerve j∗CN•G is isomorphic to
the nerve of the inertia groupoid N•IG. The isomorphism is given by

•
f−1
0 //•

f−1
1 // . . .

f−1
n−1 //•

f−1
n

jj 7→ •
f−1
0 //

fn···f1f0

��
•

f−1
1 //

f0fn···f1

��
. . .

f−1
n−1 // •

fn−1···f0fn

��

The inertia groupoid is the category of functors Fun(ΣZ,G), where ΣZ is the
category with one object and the automorphism group Z. Thus it is acted by
ΣZ and the nerve is acted by N•ΣZ. The simplicial set N•ΣZ is another than
C simplicial model of circle. Its action on N•IG is equivalent to the action of C
on j∗CN•G under the isomorphism above ([Lod, Prop. 7.3.4]).

The embedding G → IG sending A to (A, 1) induces the map of nerves
N•G → j∗CN•G: a sequence of arrows goes to a cycle of arrows with the
identical product. This map induces an embedding of cyclic sets

j∗N•G → j∗j∗CN•G.

The last cyclic set may be realized as a set of cycles of arrows in G with a marked
arrow.

Consider generators, that is the set of quiver arrows of the category ci. This
is a cyclically ordered set. A functor between ci and cj that is of degree 1 on
nerves induces a morphism between this cyclically ordered sets in the opposite
direction: an arrow goes to its preimage. Conversely, any morphism between
cyclically ordered sets of arrows uniquely defines such a functor. This gives a
functor from category Λ to the category of small categories, that is a cyclic
object in categories. Denote it by c•. Alternatively one may say that category
Λ is isomorphic to its opposite and the cyclic object c• is induced from the
cocyclic object c• under this isomorphism.

For a category C introduce a cocyclic simplicial object N• Fun(c•, C), the
cocyclic structure comes from the cyclic structure on c•.
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Proposition A.2. For a groupoid G there is a natural isomorphism

TotN• Fun(c•,G) = CN•G.

Proof. Any element of TotK• = HomΛop(Λ•, j∗K•) is defined by a nonnega-
tive integer n and image of (any) non-degenerate n-simplex of Λn. Define an
isomorphism CN•G → TotN• Fun(c•,G) by sending simplex

•
f−1
0 //•

f−1
1 // . . .

f−1
n−1 //•

f−1
n

jj

to the element of j∗Nn Fun(cn,G) given by

•

��

*
&
#
�

�
�

�

f−1
0 // •

��

*
&
#
�

�
�

�

f−1
1 // . . .

f−1
n−2 // •

��

*
&
#
�

�
�

�

f−1
n−1 // •

fn−1···f0f1

��

•

fn···f1f0

OO

fn···f2f1// •

OO�
�
�

f−1
1 // . . .

f−1
n−2 // •

OO�
�
�

f−1
n−1 // •

OO�
�
�

•

OO�
�
�

f−1
0 // •

f0fn···f1

OO

f0fn···f2// . . .
f−1
n−2 // •

OO�
�
�

f−1
n−1 // •

OO�
�
�

•

···
f−1
0 // •

···
f−1
1 // . . .

f−1
n−2 // •

···
fn−2···f0fn// •

···

Here dotted arrows are marked by the unit, columns presents elements of Fun(c•,G),
rows presents j∗N . The latter cyclic set is realized as a subset of the cyclic nerve,
the first arrow is marked, the closing arrow is not drawn.

Note that the restriction of this morphism on CN•G → N• Fun(c0,G) is
the described above isomorphism between the cyclic nerve and the nerve of
inertia.

Everything in this subsection is applicable for algebraic groupoids, that is
when morphism and objects are affine schemes. Then nerves and cyclic nerves
are simplicial and cyclic schemes.

A.4 Equivariant Hochschild homology

In this subsection all modules are objects of an additive tensor category, say
modules over a commutative ring.

Let module H be a commutative Hopf algebra with coproduct ∆, antipode
S and counit ε. Denote by G the algebraic group represented by H. Repre-
sentation V of G gives a comodule ρ : V → V ⊗H that obeys the associativity
condition. The coproduct ∆: H → H⊗H equips H with a comodule structure.
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This representation is called the left regular one. The right regular representa-
tion is isomorphic to the left by conjugation by S. Denote left and right actions
by gh and hg, where g ∈ G, h ∈ H.

For a representation (V, ρ) introduce the cosimplicial module C•(G,H) by

Cn(G,V ) = V ⊗H⊗n

δ0 = ρ⊗ id⊗ · · · ⊗ id δi = id⊗ · · ·⊗
i

∆ ⊗ · · · ⊗ id δn+1 = id⊗ · · · ⊗ id⊗ 1

σi = id⊗ · · ·⊗ i
ε ⊗ · · · ⊗ id

Cohomology of the complex cCh(C•(G,H)) is called the cohomology of repre-
sentation V .

For an algebraic group G introduce the cocyclic algebraic group G by

Gn = G×(n+1)

δi(g0, . . . , gn) =

{
(g0, . . . , gi, gi, . . . , gn) , i < n

(g0, g1, . . . , g0) , i = n

σi(g0, . . . , gn) = (g0, . . . , gi−1, gi+1, . . . , gn)

τn(g0, g1, . . . , gn) = (g1, . . . , gn, g0)

Introduce the cyclic module O• that is a representation of G by

On+1 = H⊗(n+1)

(g0, . . . , gn)h0 ⊗ · · · ⊗ hn = g1h0g
−1
0 ⊗ g2h1g

−1
1 ⊗ · · · ⊗ g0hng

−1
n

di(h0 ⊗ · · · ⊗ hn) = h0 ⊗ · · · ⊗ ε(hi)⊗ · · · ⊗ hn

si(h0 ⊗ · · · ⊗ hn) =

{
h0 ⊗ · · · ⊗∆(hi)⊗ · · · ⊗ hn , i < n

∆2(hn)⊗ h0 ⊗ · · · ⊗∆1(hn) , i = n

tn(h0 ⊗ h1 ⊗ · · · ⊗ hn) = hn ⊗ h0 ⊗ · · · ⊗ hn−1

Let module A be a G-algebra, that is an associative algebra and representa-
tion of G such that the multiplication A⊗A

·→ A is a morphism of representa-
tions. Define the cyclic module A• that is a representation of G by

An+1 = A⊗(n+1)

(g0, . . . , gn) a0 ⊗ · · · ⊗ an = g0a0 ⊗ · · · ⊗ gnan

di(a0 ⊗ · · · ⊗ an) =

{
a0 ⊗ · · · ⊗ ai · ai+1 ⊗ · · · ⊗ an , i < n

an · a0 ⊗ · · · ⊗ an−1 , i = n

si(a0 ⊗ · · · ⊗ an) = a0 ⊗ · · ·⊗
i
1 ⊗ · · · ⊗ an

tn(a0 ⊗ a1 ⊗ · · · ⊗ an) = an ⊗ a0 ⊗ · · · ⊗ an−1

Definition A.1. For an algebraic group G and a G-algebra A define the equiv-
ariant Hochschild chain complex CG

∗ (A) as the total complex of the bicomplex
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associated with the cyclic cosimplicial module C•(G, (A⊗O)•):

CG
∗ (A) = TotCh(j∗ cCh(C•(G, (A⊗O)•))).

Homology of this complex HHG
∗ (A) is called the equivariant Hochschild homol-

ogy.

The cyclic structure on the chain complex gives the operator B on the equiv-
ariant Hochschild homology. One may define as well the cyclic equivariant ho-
mology and so on in a parallel way with the usual Hochschild homology, which
is a particular case of the equivariant one with G = 1.

Let Had be the adjoint representation of G. Then by the previous subsection
cCh(C•(G,Had)) may be thought as the ring of functions on the cyclic nerve of
G and thus it is equipped with a cocyclic structure. The following proposition
states that cohomology of this complex is G-equivariant Hochschild homology
of the trivial algebra.

Proposition A.3. For an algebraic group G there is a natural morphism

cCh(C•(G,Had)) → CG
∗ (1)

that is a homotopy equivalence of complexes and commutes with operator B up
to a coboundary.

Proof. Consider the natural morphism

cCh(j∗ TotC
•(G, O•)) → TotCh(j∗ cCh(C•(G, O•))).

As all C•(G, On) are homotopy equivalent to each other and the cyclic structure
morphisms are homotopy equivalences, this morphism is a homotopy equiva-
lence. Then note that C•(G, O•) is the space of functions on N• Fun(c•, G) and
by Proposition A.2 this homotopy equivalence is the sought for. Proposition
A.1 follows that it respects operator B up to a coboundary.

Let G be an algebraic group over a commutative ring and O(T ) be a com-
mutative algebra such that its spectrum T is a torsor over G. Then

cCh(C•(G,O(T ))) = O(T/G)

and therefore CG
∗ (O(T )) is homotopy equivalent to the total complex of the

cyclic cosimplicial module O(G/T )• ⊗ C•(G, O•). Sending Oi to the struc-
ture sheaf by ε⊗(i+1) we get a morphism CG

∗ (O(T )) → Ch(j∗O(G/T )•) =
C1

∗(O(T/G)).
Consider the composition of the Isomorphism from Proposition A.3, map

induced by the embedding of the unit and the morphism given by the factor-
ization:

cCh(C•(G,Had)) → CG
∗ (1) → CG

∗ (T ) → C1
∗(O(T/G)).

8



Definition A.2. For an algebraic group G and a torsor T over it the composite
above

cCh(C•(G,Had)) → C1
∗(O(T/G))

that is a morphism of complexes commuting with operator B up to a coboundary
is called the Bott morphism.

The name is due to paper [Bot] where an analogous morphism is constructed.
The Bott morphism has a transparent meaning in terms of [TV]: this is the

inverse image of functions on the derived loop space under the map from the
stack with objects T/G and trivial morphism to the stack of G-torsors.
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